Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Biochem. 2011 Jul;112(7):1761-72. doi: 10.1002/jcb.23095.

Transcriptional regulation of claudin-18 via specific protein kinase C signaling pathways and modification of DNA methylation in human pancreatic cancer cells.

Author information

  • 1Department of Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan.

Abstract

Since claudin-18 (Cldn18) is overexpressed in precursor lesion PanIN and pancreatic duct carcinoma, it serves as a diagnostic marker and a target of immunotherapy. The stomach isoform of Cldn18, Cldn18a2 is regulated via a PKC/MAPK/AP-1-dependent pathway in PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA)-stimulated gastric cancer cells. However, little is known about how Cldn18 is regulated, not only in pancreatic duct carcinoma but also in normal human pancreatic duct epithelial cells (HPDE cells). In the present study, four pancreatic cancer cell lines, HPAF-II, HPAC, PANC-1 and BXPC3, and hTERT-HPDE cells in which the hTERT gene was introduced into HPDE cells in primary culture, were treated with TPA. In all human pancreatic cancer cell lines and hTERT-HPDE cells, Cldn18 mRNA indicated as Cldn18a2 was markedly induced by TPA and in well- or moderately differentiated human pancreatic cancer cells HPAF-II and HPAC and hTERT-HPDE cells, the protein was also strongly increased. The upregulation of Cldn18 by TPA in human pancreatic cancer cell lines was prevented by inhibitors of PKCδ, PKCε, and PKCα, whereas the upregulation of Cldn18 by TPA in hTERT-HPDE cells was prevented by inhibitors of PKCδ, PKCθ, and PKCα. Furthermore, a CpG island was identified within the coding sequence of the Cldn18 gene and treatment with the demethylating agent 5-azadeoxycytidine enhanced upregulation of Cldn18 by TPA in HPAF-II and HPAC, but not hTERT-HPDE cells. Our findings suggest that in human pancreatic cancer cells, Cldn18 is primarily regulated at the transcriptional level via specific PKC signaling pathways and modified by DNA methylation.

Copyright © 2011 Wiley-Liss, Inc.

PMID:
21381080
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk