Display Settings:

Format

Send to:

Choose Destination
J Biol Chem. 1990 Jan 25;265(3):1300-5.

The ATP binding site of the yeast plasma membrane proton-translocating ATPase.

Author information

  • 1Department of Chemistry, Cornell University, Ithaca, New York 14853.

Abstract

Photoaffinity labeling of the active site of the yeast plasma membrane H(+)-ATPase has been studied with 2-azido-AMP and 2-azido-ATP. The ATPase activity of the enzyme decreases as the time of photolysis of the photoactive nucleotides in the presence of the enzyme increases. The covalent incorporation of [alpha-32P]2-azido-AMP into the enzyme and the inhibition of ATPase activity have comparable time courses. ATP protects the ATPase from incorporation of and photoinactivation by 2-azido-ATP or 2-azido-AMP. In the dark, 2-azido-ATP inhibits the ATPase at concentrations comparable to the apparent Michaelis constant for MgATP. After photolysis and proteolysis of the protein, three overlapping peptides labeled by the nucleotide analogues were purified by reversed-phase high performance liquid chromatography and sequenced. The peptides are derived from a region of the ATPase that is highly conserved in related cation pumps forming a phosphorylated intermediate during the catalytic cycle. Labeling with both nucleotide analogues occurs in peptides containing residues from aspartate 560 to lysine 566. The amino acids in this region conform to a consensus sequence for ATP binding derived from phosphofructokinase.

PMID:
2136852
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk