Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Pharmacogenomics J. 2012 Aug;12(4):297-305. doi: 10.1038/tpj.2011.5. Epub 2011 Mar 1.

Identification of CYP2C19*4B: pharmacogenetic implications for drug metabolism including clopidogrel responsiveness.

Author information

  • 1Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA. stuart.scott@mssm.edu

Abstract

CYP2C19 is a principal enzyme involved in the bioactivation of the antiplatelet prodrug clopidogrel and common CYP2C19 loss-of-function alleles are associated with adverse cardiovascular events. To assess the impact of the CYP2C19*17 increased activity allele in the Ashkenazi Jewish (AJ) and Sephardi Jewish (SJ) populations and to determine the frequencies of additional variant alleles, 250 AJ and 135 SJ individuals were genotyped for CYP2C19*2-*10, *12-*17, *22 and P-glycoprotein (ABCB1) c.3435C>T. Importantly, CYP2C19*4, a loss-of-function allele, was identified in linkage disequilibrium with *17. This novel haplotype, designated CYP2C19*4B, significantly alters the interpretation of CYP2C19 genotyping when testing *17. Moreover, genotyping CYP2C19*17 changed the frequency of extensive metabolizers from ∼70 to ∼40%, reclassifying ∼30% as ultrarapid metabolizers. Combining CYP2C19 and ABCB1 identified ∼1 in 3 AJ and ∼1 in 2 SJ individuals at increased risk for adverse responses to clopidogrel. These data underscore the importance of including *4B and *17 when clinically genotyping CYP2C19.

PMID:
21358751
[PubMed - indexed for MEDLINE]
PMCID:
PMC3310336
Free PMC Article

Images from this publication.See all images (3)Free text

Figure 1
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk