Solvothermal synthesis of crystalline phase and shape controlled Sn(4+)-doped TiO2 nanocrystals: effects of reaction solvent

ACS Appl Mater Interfaces. 2011 Apr;3(4):1261-8. doi: 10.1021/am2000642. Epub 2011 Mar 16.

Abstract

The Sn(4+)-doped TiO(2) nanocrystals with controlled crystalline phase and morphology had been successfully prepared through easily adjusting the solvent system from the peroxo-metal-complex precursor by solvothermal method. The Sn(4+)-doped TiO(2) nanocrystals were characterized by XRD, Raman, TEM, HRTEM, XPS, ICP-AES, BET, and UV-vis. The experimental results indicated that the Sn(4+)-doped TiO(2) nanocrystals prepared in the pure water or predominant water system trend to form rodlike rutile, whereas the cubic-shaped anatase Sn(4+)-doped TiO(2) nanocrystals can be obtained in the alcohol system. The growth mechanism and microstructure evolution of the Sn(4+)-doped TiO(2) nanocrystals prepared in the different solvent systems are discussed. The liquid-phase photocatalytic degradation of phenol was used as a model reaction to test the photocatalytic activity of the synthesized materials. It was found that sample Sn(4+)-doped TiO(2) prepared in 1-butanol showed the maximum photoactivity, which attributed to higher band gap, optimal crystalline phase and surface state modifications.

Publication types

  • Research Support, Non-U.S. Gov't