Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Comp Neurol. 2011 Apr 15;519(6):1181-95. doi: 10.1002/cne.22567.

Low-threshold calcium channel subunit Ca(v) 3.3 is specifically localized in GABAergic neurons of rodent thalamus and cerebral cortex.

Author information

  • 1Center for Neuroscience, University of California at Davis, Davis, California 95618, USA.

Abstract

Relatively little is known about the subcellular localization of low threshold Ca²+ channels (T-channels) in the brain. Using immunocytochemical labeling and preembedding immunoperoxidase and silver-enhanced immunogold electron microscopy, we localized T-channel subunit Ca(v) 3.3 in rodent cerebral cortex and thalamus. Double immunofluorescent staining demonstrated that Ca(v) 3.3-labeled neurons in cerebral cortex are a subgroup of GABAergic interneurons that coexpress calbindin and in half of the cases parvalbumin. In the thalamus, virtually all reticular nucleus (RTN) neurons were immunopositive for Ca(v) 3.3, while neurons in dorsal thalamic nuclei were nonimmunoreactive. At the electron microscopic (EM) level, in cortical layers IV-V and RTN neurons, Ca(v) 3.3 immunoreactivity was mainly associated with membranes of dendrites but with some localization in cytoplasm. None was found in axon terminals. In cortex, ≈73% of immunogold particles were present in close proximity to synaptic contacts (<0.5 μm from the postsynaptic density), while 27% were distributed along membranes at extrasynaptic sites (>0.5 μm from the postsynaptic density). In RTN, ≈57% particles were evenly distributed along perisynaptic membranes and the remaining 43% of particles were diffusely localized at extrasynaptic membranes. The density of particles along the dendritic membranes of cortical neurons was 40% higher than in RTN neurons. These results suggest that Ca(v) 3.3 plays a role in regulating GABAergic neurons whose actions underlie thalamocortical rhythmicity.

Copyright © 2011 Wiley-Liss, Inc.

PMID:
21344408
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk