Format

Send to

Choose Destination
See comment in PubMed Commons below
Eur J Radiol. 2012 Feb;81(2):e101-9. doi: 10.1016/j.ejrad.2011.01.067. Epub 2011 Feb 16.

Hepatic MR imaging for in vivo differentiation of steatosis, iron deposition and combined storage disorder: single-ratio in/opposed phase analysis vs. dual-ratio Dixon discrimination.

Author information

  • 1Department of Radiology, Duke University Medical Center, DUMC 3808, Durham, NC 27710, United States.

Abstract

OBJECTIVE:

To assess whether in vivo dual-ratio Dixon discrimination can improve detection of diffuse liver disease, specifically steatosis, iron deposition and combined disease over traditional single-ratio in/opposed phase analysis.

METHODS:

Seventy-one patients with biopsy-proven (17.7 ± 17.0 days) hepatic steatosis (n = 16), iron deposition (n = 11), combined deposition (n = 3) and neither disease (n = 41) underwent MR examinations. Dual-echo in/opposed-phase MR with Dixon water/fat reconstructions were acquired. Analysis consisted of: (a) single-ratio hepatic region-of-interest (ROI)-based assessment of in/opposed ratios; (b) dual-ratio hepatic ROI assessment of in/opposed and fat/water ratios; (c) computer-aided dual-ratio assessment evaluating all hepatic voxels. Disease-specific thresholds were determined; statistical analyses assessed disease-dependent voxel ratios, based on single-ratio (a) and dual-ratio (b and c) techniques.

RESULTS:

Single-ratio discrimination succeeded in identifying iron deposition (I/O(Ironthreshold)<0.88) and steatosis (I/O(Fatthreshold>1.15)) from normal parenchyma, sensitivity 70.0%; it failed to detect combined disease. Dual-ratio discrimination succeeded in identifying abnormal hepatic parenchyma (F/W(Normalthreshold)>0.05), sensitivity 96.7%; logarithmic functions for iron deposition (I/O(Irondiscriminator)<e((0.01-F/W(Iron))/0.48)) and for steatosis (I/O(Fatdiscriminator)>e((F/W(Fat)-0.01)/0.48)) differentiated combined from isolated diseases, sensitivity 100.0%; computer-aided dual-ratio analysis was comparably sensitive but less specific, 90.2% vs. 97.6%.

CONCLUSION:

MR two-point-Dixon imaging using dual-ratio post-processing based on in/opposed and fat/water ratios improved in vivo detection of hepatic steatosis, iron deposition, and combined storage disease beyond traditional in/opposed analysis.

Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk