Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nanoscale. 2011 Apr;3(4):1731-40. doi: 10.1039/c0nr00731e. Epub 2011 Feb 16.

Architectural integration of the components necessary for electrical energy storage on the nanoscale and in 3D.

Author information

  • 1US Naval Research Laboratory, Surface Chemistry Branch (Code 6170), 4555 Overlook Avenue SW, Washington, DC 20375, USA.

Abstract

We describe fabrication of three-dimensional (3D) multifunctional nanoarchitectures in which the three critical components of a battery--cathode, separator/electrolyte, and anode--are internally assembled as tricontinuous nanoscopic phases. The architecture is initiated using sol-gel chemistry and processing to erect a 3D self-wired nanoparticulate scaffold of manganese oxide (>200 m(2) g(-1)) with a continuous, open, and mesoporous void volume. The integrated 3D system is generated by exhaustive coverage of the oxide network by an ultrathin, conformal layer of insulating polymer that forms via self-limiting electrodeposition of poly(phenylene oxide). The remaining interconnected void volume is then wired with RuO(2) nanowebs using subambient thermal decomposition of RuO(4). Transmission electron microscopy demonstrates that the three nanoscopic charge-transfer functional components--manganese oxide, polymer separator/cation conductor, and RuO(2)--exhibit the stratified, tricontinuous design of the phase-by-phase construction. This architecture contains all three components required for a solid-state energy storage device within a void volume sized at tens of nanometres such that nanometre-thick distances are established between the opposing electrodes. We have now demonstrated the ability to assemble multifunctional energy-storage nanoarchitectures on the nanoscale and in three dimensions.

PMID:
21327256
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk