Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Sci Transl Med. 2011 Feb 16;3(70):70ra13. doi: 10.1126/scitranslmed.3001845.

Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans.

Author information

  • 1Institute of Endocrinology, Metabolism and Reproduction, Quito, Ecuador. jguevara@iemyr-ecuador.org

Abstract

Mutations in growth signaling pathways extend life span, as well as protect against age-dependent DNA damage in yeast and decrease insulin resistance and cancer in mice. To test their effect in humans, we monitored for 22 years Ecuadorian individuals who carry mutations in the growth hormone receptor (GHR) gene that lead to severe GHR and IGF-1 (insulin-like growth factor-1) deficiencies. We combined this information with surveys to identify the cause and age of death for individuals in this community who died before this period. The individuals with GHR deficiency exhibited only one nonlethal malignancy and no cases of diabetes, in contrast to a prevalence of 17% for cancer and 5% for diabetes in control subjects. A possible explanation for the very low incidence of cancer was suggested by in vitro studies: Serum from subjects with GHR deficiency reduced DNA breaks but increased apoptosis in human mammary epithelial cells treated with hydrogen peroxide. Serum from GHR-deficient subjects also caused reduced expression of RAS, PKA (protein kinase A), and TOR (target of rapamycin) and up-regulation of SOD2 (superoxide dismutase 2) in treated cells, changes that promote cellular protection and life-span extension in model organisms. We also observed reduced insulin concentrations (1.4 μU/ml versus 4.4 μU/ml in unaffected relatives) and a very low HOMA-IR (homeostatic model assessment-insulin resistance) index (0.34 versus 0.96 in unaffected relatives) in individuals with GHR deficiency, indicating higher insulin sensitivity, which could explain the absence of diabetes in these subjects. These results provide evidence for a role of evolutionarily conserved pathways in the control of aging and disease burden in humans.

Comment in

PMID:
21325617
[PubMed - indexed for MEDLINE]
PMCID:
PMC3357623
Free PMC Article

Images from this publication.See all images (4)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk