Format

Send to

Choose Destination
See comment in PubMed Commons below
Methods Mol Med. 2001;62:137-53. doi: 10.1385/1-59259-142-6:137.

Oxidative stress indices in Parkinson's disease : biochemical determination.

Abstract

ABSTRUCT: Parkinson's disease (PD) is associated with progressive degeneration of melanin-containing dopamine neuron cell bodies arising in the substantia nigra pars compacta (SNpc) and projecting terminals to the striatum. The disease is best characterized biochemically as a deficiency of striatal dopamine. The mechanism of neurodegeneration remains an enigma despite a large body of investigation and several hypotheses (1-5). In the past decade much has been learned about the chemical pathology of the disease. This progress has been helped by elucidation of the mechanism of the neurotoxic actions of 6-hydroxydopamine (6-OHDA) and N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which are used to induce animal models of this disease. Thus, the most valid current hypothesis concerning the pathogenesis of idiopathic PD is progressive oxidative stress (OS), which can generate excessive reactive oxygen species (ROS) selectively in the SNpc (1-9), and subsequent biochemical abnormalities (Table 1). In addition, the ROS scavenging system may also diminish, which would exaggerate the condition leading to accumulation of ROS. In PD, it is thought that both these events occur; Table 1 gives a summary of the biochemical changes identified to date in the SNpc of PD patients. Iron, monoamine oxidase B (MAO-B), copper/zinc superoxide dismutase (Cu/Zn-SOD), and heme oxygenase (radical producing) are increased; reduced glutathione (GSH) and vitamin C (radical scavenging) are decreased. Whether OS is a primary or secondary event in PD has not been established, but when it does occur, OS can lead to a cascade of events resulting in the demise of the nigrostriatal dopaminergic neurons. One approach toward protection of such neurons is the use of radical scavengers or iron chelators as neuroprotective drugs (10). Table 1 Biochemical Alterations in Substantia Nigra of Parkinson's Disease Indicating Oxidative Stress Elevated Decreased Iron (in microglia, astrocytes, oligodendrocytes, and melanized dopamine neurons and mitochondria) GSH (GSSG unchanged); GSH/GSSG ratio decreased Mitochondrial complex I Ferritin Calcium binding protein (calbindin 28) Mitochondrial monoamine oxidase B Transferrin and transferrin receptor Lipofuscin Vitamins E and C Ubiquitin Copper Cu/Zn-superoxide dismutase Cytotoxic cytokines (TNF-a, IL-1, IL-6) Inflammatory transcription factor NFKB Heme oxygenase-1 Ratio of oxidized to reduced glutathione (GSSG/GSH) Nitric oxide Neuromelanin.

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk