Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell Cycle. 2011 Mar 1;10(5):767-70. Epub 2011 Mar 1.

Kelch repeat proteins control yeast PKA activity in response to nutrient availability.

Author information

  • 1Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY, USA.

Abstract

Regulation of protein kinase A (PKA) by binding of cAMP to the regulatory subunit and the resulting release of the active catalytic subunit is a very well established mechanism of kinase activation. We have shown recently that PKA in budding yeast is also subject to an additional level of regulation that that modulates its activity in response to nutrient availability. Nutrient regulation of PKA activity requires a pair of proteins, Gpb1 and Gpb2, that contain several kelch repeats, a sequence motif that predicts that they fold into a β-propeller structure. The regulatory process mediated by Gpb1 and Gpb2 causes an increase in the stability and phosphorylation of the PKA regulatory subunit Bcy1 in response to low extracellular glucose concentrations. Phosphorylation of serine-145 of Bcy1 controls its stability, and other phosphorylation events at the cluster of serines at positions 74-84 correlate with changes in nutrient availability. Here we present data consistent with a model in which the effects of Gpb1 and Gpb2 on Bcy1 are an indirect consequence of their primary effects on the PKA catalytic subunits.

© 2011 Landes Bioscience

PMID:
21311222
[PubMed - indexed for MEDLINE]
PMCID:
PMC3100789
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Landes Bioscience Icon for PubMed Central
    Loading ...
    Write to the Help Desk