Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Ecol Lett. 2011 Apr;14(4):349-57. doi: 10.1111/j.1461-0248.2011.01593.x. Epub 2011 Feb 9.

Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO₂.

Author information

  • 1Program of Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.

Abstract

The earth's future climate state is highly dependent upon changes in terrestrial C storage in response to rising concentrations of atmospheric CO₂. Here we show that consistently enhanced rates of net primary production (NPP) are sustained by a C-cascade through the root-microbe-soil system; increases in the flux of C belowground under elevated CO₂ stimulated microbial activity, accelerated the rate of soil organic matter decomposition and stimulated tree uptake of N bound to this SOM. This process set into motion a positive feedback maintaining greater C gain under elevated CO₂ as a result of increases in canopy N content and higher photosynthetic N-use efficiency. The ecosystem-level consequence of the enhanced requirement for N and the exchange of plant C for N belowground is the dominance of C storage in tree biomass but the preclusion of a large C sink in the soil.

© 2011 Blackwell Publishing Ltd/CNRS.

PMID:
21303437
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk