Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Virology. 2011 Apr 10;412(2):269-77. doi: 10.1016/j.virol.2011.01.010. Epub 2011 Feb 4.

Comparison of in vivo and in vitro evolution of CCR5 to CXCR4 coreceptor use of primary human immunodeficiency virus type 1 variants.

Author information

  • 1Dept of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA) at Academic Medical Center of University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.

Abstract

During the course of at least 50% of HIV-1 subtype B infections, CCR5-using (R5) viruses evolve towards a CXCR4-using phenotype. To gain insight in the transition from CCR5 to CXCR4 coreceptor use, we investigated whether acquisition of CXCR4 use in vitro of R5 viruses from four patients resembled this process in vivo. R5 variants from only one patient acquired CXCR4 use in vitro. These variants had envelopes with higher V3 charge and higher number of potential N-linked glycosylation sites when compared to R5 variants that failed to gain CXCR4 use in vitro. In this patient, acquisition of CXCR4 use in vitro and in vivo was associated with multiple mutational patterns not necessarily involving the V3 region. However, changes at specific V3 positions were prerequisite for persistence of CXCR4-using variants in vivo, suggesting that positive selection targeting the V3 loop is required for emergence of CXCR4-using variants during natural disease course.

Copyright © 2010 Elsevier Inc. All rights reserved.

PMID:
21295814
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk