Send to

Choose Destination
See comment in PubMed Commons below
Biochem Pharmacol. 2011 Apr 1;81(7):934-41. doi: 10.1016/j.bcp.2011.01.012. Epub 2011 Feb 1.

PPARγ activation redirects macrophage cholesterol from fecal excretion to adipose tissue uptake in mice via SR-BI.

Author information

  • 1Division of Endocrinology, Diabetes and Metabolism, University of Pennsylvania School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA.


PPARγ agonists, used in the treatment of Type 2 diabetes, can raise HDL-cholesterol, therefore could potentially stimulate macrophage-to-feces reverse cholesterol transport (RCT). We aimed to test whether PPARγ activation promotes macrophage RCT in vivo. Macrophage RCT was assessed in mice using cholesterol loaded/(3)H-cholesterol labeled macrophages. PPARγ agonist GW7845 (20 mg/kg/day) did not change (3)H-tracer plasma appearance, but surprisingly decreased fecal (3)H-free sterol excretion by 43% (P<0.01) over 48h. Total free cholesterol efflux from macrophages to serum (collected from control and GW7845 groups) was not different, although ABCA1-mediated efflux was significantly higher with GW7845. To determine the effect of PPARγ activation on HDL cholesterol uptake by different tissues, the metabolic fate of HDL labeled with (3)H-cholesteryl ether (CE) was also measured. We observed two-fold increase in HDL derived (3)H-CE uptake by adipose tissue (P<0.005) with concomitant 22% decrease in HDL derived (3)H-CE uptake by the liver (P<0.05) in GW7845 treated wild type mice. This was associated with a significant increase in SR-BI protein expression in adipose tissue, but not liver. The same experiment in SR-BI knockout mice, showed no difference in HDL derived (3)H-CE uptake by adipose tissue or liver. In conclusion, PPARγ activation decreases the fecal excretion of macrophage derived cholesterol in mice. This is not due to inhibition of cholesterol efflux from macrophages, but rather involves redirection of effluxed cholesterol from liver towards adipose tissue uptake via SR-BI. This represents a novel mechanism for regulation of RCT and may extend the therapeutic implications of these ligands.

Copyright © 2011 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk