Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2011 Mar 2;133(8):2605-12. doi: 10.1021/ja108861q. Epub 2011 Feb 3.

Ultrahigh mobility in polymer field-effect transistors by design.

Author information

  • 1Max Planck Institute for Polymer Research, Mainz, Germany.

Abstract

In this article, the design paradigm involving molecular weight, alkyl substituents, and donor-acceptor interaction for the poly[2,6-(4,4-bis-alkyl-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (cyclopentadithiophene-benzothiadiazole) donor-acceptor copolymer (CDT-BTZ) toward field-effect transistors (FETs) with ultrahigh mobilities is presented and discussed. It is shown that the molecular weight plays a key role in improving hole mobilities, reaching an exceptionally high value of up to 3.3 cm(2) V(-1) s(-1). Possible explanations for this observation is highlighted in conjunction with thin film morphology and crystallinity. Hereby, it is found that the former does not change, whereas, at the same time, crystallinity improved with ever growing molecular weight. Furthermore, other important structural design factors such as alkyl chain substituents and donor-acceptor interaction between the polymer backbones potentially govern intermolecular stacking distances crucial for charge transport and hence for device performance. In this aspect, for the first time we attempt to shed light onto donor-acceptor interactions between neighboring polymer chains with the help of solid state nuclear magnetic resonance (NMR). On the basis of our results, polymer design principles are inferred that might be of relevance for prospective semiconductors exhibiting hole mobilities even exceeding 3 cm(2) V(-1) s(-1).

PMID:
21291267
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk