Format

Send to:

Choose Destination
See comment in PubMed Commons below
World J Radiol. 2011 Jan 28;3(1):1-16. doi: 10.4329/wjr.v3.i1.1.

Multiparametric MRI biomarkers for measuring vascular disrupting effect on cancer.

Author information

  • 1Huaijun Wang, Guy Marchal, Yicheng Ni, Department of Radiology, University Hospitals, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium.

Abstract

Solid malignancies have to develop their own blood supply for their aggressive growth and metastasis; a process known as tumor angiogenesis. Angiogenesis is largely involved in tumor survival, progression and spread, which are known to be significantly attributed to treatment failures. Over the past decades, efforts have been made to understand the difference between normal and tumor vessels. It has been demonstrated that tumor vasculature is structurally immature with chaotic and leaky phenotypes, which provides opportunities for developing novel anticancer strategies. Targeting tumor vasculature is not only a unique therapeutic intervention to starve neoplastic cells, but also enhances the efficacy of conventional cancer treatments. Vascular disrupting agents (VDAs) have been developed to disrupt the already existing neovasculature in actively growing tumors, cause catastrophic vascular shutdown within short time, and induce secondary tumor necrosis. VDAs are cytostatic; they can only inhibit tumor growth, but not eradicate the tumor. This novel drug mechanism has urged us to develop multiparametric imaging biomarkers to monitor early hemodynamic alterations, cellular dysfunctions and metabolic impairments before tumor dimensional changes can be detected. In this article, we review the characteristics of tumor vessels, tubulin-destabilizing mechanisms of VDAs, and in vivo effects of the VDAs that have been mostly studied in preclinical studies and clinical trials. We also compare the different tumor models adopted in the preclinical studies on VDAs. Multiparametric imaging biomarkers, mainly diffusion-weighted imaging and dynamic contrast-enhanced imaging from magnetic resonance imaging, are evaluated for their potential as morphological and functional imaging biomarkers for monitoring therapeutic effects of VDAs.

KEYWORDS:

Diffusion-weighted imaging; Dynamic contrast-enhanced magnetic resonance imaging; Imaging biomarkers; Magnetic resonance imaging; Tumor vessels; Vascular disrupting agents

PMID:
21286490
[PubMed]
PMCID:
PMC3030722
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Baishideng Publishing Group Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk