Send to:

Choose Destination
See comment in PubMed Commons below
J Pharmacol Exp Ther. 2011 Apr;337(1):312-20. doi: 10.1124/jpet.110.175042. Epub 2011 Jan 24.

Synergistic interaction between the two mechanisms of action of tapentadol in analgesia.

Author information

  • 1Global Preclinical Research and Development, Department of Pharmacology, Grünenthal GmbH, Zieglerstrasse 6, 52078 Aachen, Germany.

Erratum in

  • J Pharmacol Exp Ther. 2012 Jul;342(1):232.
  • J Pharmacol Exp Ther. 2014 Mar;348(3):489.


The novel centrally acting analgesic tapentadol [(-)-(1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol hydrochloride] combines two mechanisms of action, μ-opioid receptor (MOR) agonism and noradrenaline reuptake inhibition (NRI), in a single molecule. Pharmacological antagonism studies have demonstrated that both mechanisms of action contribute to the analgesic effects of tapentadol. This study was designed to investigate the nature of the interaction of the two mechanisms. Dose-response curves were generated in rats for tapentadol alone or in combination with the opioid antagonist naloxone or the α(2)-adrenoceptor antagonist yohimbine. Two different pain models were used: 1) low-intensity tail-flick and 2) spinal nerve ligation. In each model, we obtained dose-effect relations to reveal the effect of tapentadol based on MOR agonism, NRI, and unblocked tapentadol. Receptor fractional occupation was determined from tapentadol's brain concentration and its dissociation constant for each binding site. Tapentadol produced dose-dependent analgesic effects in both pain models, and its dose-effect curves were shifted to the right by both antagonists, thereby providing data to distinguish between MOR agonism and NRI. Both isobolographic analysis of occupation-effect data and a theoretically equivalent methodology determining interactions from the effect scale demonstrated very pronounced synergistic interaction between the two mechanisms of action of tapentadol. This may explain why tapentadol is only 2- to 3-fold less potent than morphine across a variety of preclinical pain models despite its 50-fold lower affinity for the MOR. This is probably the first demonstration of a synergistic interaction between the occupied receptors for a single compound with two mechanisms of action.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk