Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Reprod Dev. 2011 Apr;57(2):273-9. Epub 2011 Jan 18.

In vitro development and postvitrification survival of cloned feline embryos derived from preadipocytes.

Author information

  • 1Department of Life Science, School of Agriculture, Meiji University, Kanagawa, Japan.

Abstract

The aim of the present study was to optimize the conditions for in vitro development and postvitrification survival of somatic cell cloned feline embryos. To determine the effects of cell cycle synchronization of the nuclear donor cells, we cultured preadipocytes under serum starvation or conventional conditions. After two days in serum starvation culture, the proportion of synchronized donor cells at the G0/G1 phase was 91.6%. This was significantly higher than the proportion of non-synchronized cells in the proliferative phase (72.6%, P<0.05). The in vitro development of somatic cell nuclear transfer (SCNT) embryos reconstructed using donor cells treated under serum starvation conditions (normal cleavage rate of 65.7%, 46/70, and blastocyst formation rate of 20.0%, 14/70) was comparable to that of the serum supplemented group (52.5%, 31/59, and 20.3%, 12/59). Use of in vitro or in vivo matured oocytes as recipient cytoplasts equally supported development of the SCNT embryos to the blastocyst stage (11.9%, 5/42, vs. 9.5%, 2/21). SCNT-derived blastocysts were vitrified using the original minimum volume cooling (MVC) or the modified (stepwise) MVC method. Although none (n=10) of the SCNT blastocysts survived following vitrification by the original MVC method, the stepwise MVC method resulted in 100% survival after rewarming (n=11). In conclusion, we demonstrated that feline somatic cell cloned embryos with a high developmental ability can be produced irrespective of cell cycle synchronization of donor cells using either in vivo or in vitro matured oocytes. Furthermore, by utilizing a stepwise vitrification method, we showed that it is possible to cryopreserve cloned feline blastocysts.

PMID:
21258180
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Write to the Help Desk