Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2011 Mar 31;178:261-9. doi: 10.1016/j.neuroscience.2011.01.021. Epub 2011 Jan 19.

Selectively diminished corpus callosum fibers in congenital central hypoventilation syndrome.

Author information

  • 1Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095-1763, USA.

Abstract

Congenital central hypoventilation syndrome (CCHS), a condition associated with mutations in the PHOX2B gene, is characterized by loss of breathing drive during sleep, insensitivity to CO2 and O2, and multiple somatomotor, autonomic, neuropsychological, and ophthalmologic deficits, including impaired intrinsic and extrinsic eye muscle control. Brain structural studies show injury in peri-callosal regions and the corpus callosum (CC), which has the potential to affect functions disturbed in the syndrome; however, the extent of CC injury in CCHS is unclear. Diffusion tensor imaging (DTI)-based fiber tractography procedures display fiber directional information and allow quantification of fiber integrity. We performed DTI in 13 CCHS children (age, 18.2±4.7 years; eight male) and 31 control (17.4±4.9 years; 18 male) subjects using a 3.0-Tesla magnetic resonance imaging scanner; CC fibers were assessed globally and regionally with tractography procedures, and fiber counts and densities compared between groups using analysis-of-covariance (covariates; age and sex). Global CC evaluation showed reduced fiber counts and densities in CCHS over control subjects (CCHS vs. controls; fiber-counts, 4490±854 vs. 5232±777, P<0.001; fiber-density, 10.0±1.5 vs. 10.8±0.9 fibers/mm2, P<0.020), and regional examination revealed that these changes are localized to callosal axons projecting to prefrontal (217±47 vs. 248±32, P<0.005), premotor (201±51 vs. 241±47, P<0.012), parietal (179±64 vs. 238±54, P<0.002), and occipital regions (363±46 vs. 431±82, P<0.004). Corpus callosum fibers in CCHS are compromised in motor, cognitive, speech, and ophthalmologic regulatory areas. The mechanisms of fiber injury are unclear, but may result from hypoxia or perfusion deficits accompanying the syndrome, or from consequences of PHOX2B action.

Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

PMID:
21256194
[PubMed - indexed for MEDLINE]
PMCID:
PMC3048899
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk