Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Microbiol. 2011 Feb;79(3):633-46. doi: 10.1111/j.1365-2958.2010.07471.x. Epub 2010 Dec 7.

Regulation of yeast Yak1 kinase by PKA and autophosphorylation-dependent 14-3-3 binding.

Author information

  • 1School of Chemical and Biological Engineering Interdisciplinary Program for Bioengineering School of Biological Sciences, Seoul National University, 599 Gwanak-gu, Gwanak-ro, Seoul 151-744, Korea.

Abstract

Yak1 is a member of an evolutionarily conserved family of Ser/Thr protein kinases known as dual-specificity Tyr phosphorylation-regulated kinases (DYRKs). Yak1 was originally identified as a growth antagonist, which functions downstream of Ras/PKA signalling pathway. It has been known that Yak1 is phosphorylated by PKA in vitro and is translocated to the nucleus upon nutrient deprivation. However, the regulatory mechanisms for Yak1 activity and localization are largely unknown. In the present study, we investigated the role of PKA and Bmh1, a yeast 14-3-3 protein, in regulation of Yak1. We demonstrate that PKA-dependent phosphorylation of Yak1 on Ser295 and two minor sites inhibits nuclear localization of Yak1. We also show that intramolecular autophosphorylation on at least four Ser/Thr residues in the non-catalytic N-terminal domain is required for full kinase activity of Yak1. The most potent autophosphorylation site, Thr335, plays an essential role for Bmh1 binding in collaboration with a yet unidentified second binding site in the N-terminal domain. Bmh1 binding decreases the catalytic activity of Yak1 without affecting its subcellular localization. Since the binding of 14-3-3 proteins to Yak1 coincides with PKA activity, such regulatory mechanisms might allow cytoplasmic retention of an inactive form of Yak1 under high glucose conditions.

© 2010 Blackwell Publishing Ltd.

PMID:
21255108
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk