Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Vis Exp. 2011 Jan 12;(47). pii: 2226. doi: 10.3791/2226.

An investigation of the effects of sports-related concussion in youth using functional magnetic resonance imaging and the head impact telemetry system.

Author information

  • 1Occupational Science and Occupational Therapy, University of Toronto. michelle.keightley@utoronto.ca

Abstract

One of the most commonly reported injuries in children who participate in sports is concussion or mild traumatic brain injury (mTBI). Children and youth involved in organized sports such as competitive hockey are nearly six times more likely to suffer a severe concussion compared to children involved in other leisure physical activities. While the most common cognitive sequelae of mTBI appear similar for children and adults, the recovery profile and breadth of consequences in children remains largely unknown, as does the influence of pre-injury characteristics (e.g. gender) and injury details (e.g. magnitude and direction of impact) on long-term outcomes. Competitive sports, such as hockey, allow the rare opportunity to utilize a pre-post design to obtain pre-injury data before concussion occurs on youth characteristics and functioning and to relate this to outcome following injury. Our primary goals are to refine pediatric concussion diagnosis and management based on research evidence that is specific to children and youth. To do this we use new, multi-modal and integrative approaches that will: 1. Evaluate the immediate effects of head trauma in youth. 2. Monitor the resolution of post-concussion symptoms (PCS) and cognitive performance during recovery. 3. Utilize new methods to verify brain injury and recovery. To achieve our goals, we have implemented the Head Impact Telemetry (HIT) System. (Simbex; Lebanon, NH, USA). This system equips commercially available Easton S9 hockey helmets (Easton-Bell Sports; Van Nuys, CA, USA) with single-axis accelerometers designed to measure real-time head accelerations during contact sport participation. By using telemetric technology, the magnitude of acceleration and location of all head impacts during sport participation can be objectively detected and recorded. We also use functional magnetic resonance imaging (fMRI) to localize and assess changes in neural activity specifically in the medial temporal and frontal lobes during the performance of cognitive tasks, since those are the cerebral regions most sensitive to concussive head injury. Finally, we are acquiring structural imaging data sensitive to damage in brain white matter.

PMID:
21248710
[PubMed - indexed for MEDLINE]
PMCID:
PMC3182638
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for MyJove Corporation Icon for PubMed Central
    Loading ...
    Write to the Help Desk