Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Exp Bot. 1997 Mar;48 Spec No:539-50. doi: 10.1093/jxb/48.Special_Issue.539.

Characterization of ion channel modulator effects on ABA- and malate-induced stomatal movements: strong regulation by kinase and phosphatase inhibitors, and relative insensitivity to mastoparans.

Author information

  • 1Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0116, USA.


In the present study abscisic acid-induced stomatal closing, and malate effects on stomatal apertures were analysed in the presence of guard cell ion channel regulators. A recent study has suggested that abscisic acid (ABA) activation of protein kinases and/or inhibition of protein phosphatases may be central to activation of guard cell slow anion channels and mediation of stomatal closing in Vicia faba (Schmidt et al., 1995). These findings were confirmed and extended in the present study showing that both in Vicia faba and in Commelina communis ABA-induced stomatal closings were abolished by kinase inhibitors and enhanced by the protein phosphatase inhibitor okadaic acid. Further detailed studies demonstrate that very high 40 mM extracellular malate concentrations are required to close stomata only partially and that okadaic acid also enhances malate-induced stomatal closing. In addition, when stomata are widely opened, even at 40 mM malate concentrations, no malate effect on stomatal apertures was observed. This finding may be explained by a complete inactivation of guard cell anion channels when stomatal apertures are opened very widely and suggests that extracellular malate cannot function as a primary CO(2) signal in stomatal regulation. The G-protein regulators mastoparan and mas7 as well as neomycin showed no significant effects on light-induced stomatal opening and ABA-induced stomatal closing. Findings reported here correlate closely to recent findings on slow anion channel regulation in guard cells and support the hypothesis that activation of these anion channels by phosphorylation events and complete inactivation by dephosphorylation events is a rate-limiting component in guard cell signal transduction. Furthermore, the presented data support a model in which ABA-activation of protein kinases and/or inhibition of okadaic acidsensitive protein phosphatases is central to ABA regulation of stomatal movements in Vicia faba and Commelina communis.

Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk