Format

Send to:

Choose Destination
See comment in PubMed Commons below
ACS Appl Mater Interfaces. 2011 Feb;3(2):261-70. doi: 10.1021/am1009056. Epub 2011 Jan 18.

Unveiling the formation pathway of single crystalline porous silicon nanowires.

Author information

  • 1Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.

Abstract

Porous silicon nanowire is emerging as an interesting material system due to its unique combination of structural, chemical, electronic, and optical properties. To fully understand their formation mechanism is of great importance for controlling the fundamental physical properties and enabling potential applications. Here we present a systematic study to elucidate the mechanism responsible for the formation of porous silicon nanowires in a two-step silver-assisted electroless chemical etching method. It is shown that silicon nanowire arrays with various porosities can be prepared by varying multiple experimental parameters such as the resistivity of the starting silicon wafer, the concentration of oxidant (H(2)O(2)) and the amount of silver catalyst. Our study shows a consistent trend that the porosity increases with the increasing wafer conductivity (dopant concentration) and oxidant (H(2)O(2)) concentration. We further demonstrate that silver ions, formed by the oxidation of silver, can diffuse upwards and renucleate on the sidewalls of nanowires to initiate new etching pathways to produce a porous structure. The elucidation of this fundamental formation mechanism opens a rational pathway to the production of wafer-scale single crystalline porous silicon nanowires with tunable surface areas ranging from 370 to 30 m(2) g(-1) and can enable exciting opportunities in catalysis, energy harvesting, conversion, storage, as well as biomedical imaging and therapy.

PMID:
21244020
[PubMed - indexed for MEDLINE]
PMCID:
PMC3061564
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk