Send to:

Choose Destination
See comment in PubMed Commons below
Blood. 2011 Mar 10;117(10):2967-74. doi: 10.1182/blood-2010-08-304303. Epub 2011 Jan 14.

Functional study of the vitamin K cycle in mammalian cells.

Author information

  • 1Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.


We describe a cell-based assay for studying vitamin K-cycle enzymes. A reporter protein consisting of the gla domain of factor IX (amino acids 1-46) and residues 47-420 of protein C was stably expressed in HEK293 and AV12 cells. Both cell lines secrete carboxylated reporter when fed vitamin K or vitamin K epoxide (KO). However, neither cell line carboxylated the reporter when fed KO in the presence of warfarin. In the presence of warfarin, vitamin K rescued carboxylation in HEK293 cells but not in AV12 cells. Dicoumarol, an NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) inhibitor, behaved similarly to warfarin in both cell lines. Warfarin-resistant vitamin K epoxide reductase (VKOR-Y139F) supported carboxylation in HEK293 cells when fed KO in the presence of warfarin, but it did not in AV12 cells. These results suggest the following: (1) our cell system is a good model for studying the vitamin K cycle, (2) the warfarin-resistant enzyme reducing vitamin K to hydroquinone (KH₂) is probably not NQO1, (3) there appears to be a warfarin-sensitive enzyme other than VKOR that reduces vitamin K to KH₂, and (4) the primary function of VKOR is the reduction of KO to vitamin K.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk