Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Gastrointest Liver Physiol. 2011 Mar;300(3):G433-41. doi: 10.1152/ajpgi.00163.2009. Epub 2011 Jan 13.

Deficiency in myeloid differentiation factor-2 and toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice.

Author information

  • 1Department of Medicine, University of Massachusetts, Medical School, Worcester, 01605-2324, USA.

Abstract

Toll-like receptor 4 (TLR4) and its coreceptor, myeloid differentiation factor-2 (MD-2), are key in recognition of lipopolysaccharide (LPS) and activation of proinflammatory pathways. Here we tested the hypothesis that TLR4 and its coreceptor MD-2 play a central role in nonalcoholic steatohepatitis (NASH) and liver fibrosis in nonalcoholic fatty liver disease. Mice of control genotypes and those deficient in MD-2 or TLR4 [knockout (KO)] received methionine choline-deficient (MCD) or methionine choline-supplemented (MCS) diet. In mice of control genotypes, MCD diet resulted in NASH, liver triglycerides accumulation, and increased thiobarbituric acid reactive substances, a marker of lipid peroxidation, compared with MCS diet. These features of NASH were significantly attenuated in MD-2 KO and TLR4 KO mice. Serum alanine aminotransferase, an indicator of liver injury, was increased in MCD diet-fed genotype controls but was attenuated in MD-2 KO and TLR4 KO mice. Inflammatory activation, indicated by serum TNF-α and nictoinamide adenine dinucleotide phosphate oxidase complex mRNA expression and activation, was significantly lower in MCD diet-fed MD-2 KO and TLR4 KO compared with corresponding genotype control mice. Markers of liver fibrosis [collagen by Sirius red and α-smooth muscle actin (SMA) staining, procollagen-I, transforming growth factor-β1, α-SMA, matrix metalloproteinase-2, and tissue inhibitor of matrix metalloproteinase-1 mRNA] were attenuated in MD-2 and TLR4 KO compared with their control genotype counterparts. In conclusion, our results demonstrate a novel, critical role for LPS recognition complex, including MD-2 and TLR4, through NADPH activation in liver steatosis, and fibrosis in a NASH model in mice.

PMID:
21233280
[PubMed - indexed for MEDLINE]
PMCID:
PMC3302188
Free PMC Article

Images from this publication.See all images (4)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Publication Types, MeSH Terms, Substances, Supplementary Concepts, Grant Support

Publication Types

MeSH Terms

Substances

Supplementary Concepts

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk