Format

Send to:

Choose Destination
See comment in PubMed Commons below
Alcohol Clin Exp Res. 2011 Apr;35(4):671-88. doi: 10.1111/j.1530-0277.2010.01385.x. Epub 2011 Jan 11.

Adolescent binge drinking alters adult brain neurotransmitter gene expression, behavior, brain regional volumes, and neurochemistry in mice.

Author information

  • 1Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Abstract

BACKGROUND:

Binge drinking is common in human adolescents. The adolescent brain is undergoing structural maturation and has a unique sensitivity to alcohol neurotoxicity. Therefore, adolescent binge ethanol may have long-term effects on the adult brain that alter brain structure and behaviors that are relevant to alcohol-use disorders.

METHODS:

To determine whether adolescent ethanol (AE) binge drinking alters the adult brain, male C57BL/6 mice were treated with either water or ethanol during adolescence (5 g/kg/d, i.g., postnatal days P28 to P37) and assessed during adulthood (P60 to P88). An array of neurotransmitter-specific genes, behavioral tests (i.e., reversal learning, prepulse inhibition, and open field), and postmortem brain structure using magnetic resonance imaging (MRI) and immunohistochemistry, were employed to assess persistent alterations in adult brain.

RESULTS:

At P38, 24 hours after AE binge, many neurotransmitter genes, particularly cholinergic and dopaminergic, were reduced by ethanol treatment. Interestingly, dopamine receptor type 4 mRNA was reduced and confirmed using immunohistochemistry. Normal control maturation (P38 to P88) resulted in decreased neurotransmitter mRNA, e.g., an average decrease of 56%. Following AE treatment, adults showed greater gene expression reductions than controls, averaging 73%. Adult spatial learning assessed in the Morris water maze was not changed by AE treatment, but reversal learning experiments revealed deficits. Assessment of adult brain region volumes using MRI indicated that the olfactory bulb and basal forebrain were smaller in adults following AE. Immunohistochemical analyses found reduced basal forebrain area and fewer basal forebrain cholinergic neurons.

CONCLUSIONS:

Adolescent binge ethanol treatment reduces adult neurotransmitter gene expression, particularly cholinergic genes, reduces basal forebrain and olfactory bulb volumes, and causes a reduction in the density of basal forebrain acetylcholine neurons. Loss of cholinergic neurons and forebrain structure could underlie adult reversal learning deficits following adolescent binge drinking.

Copyright © 2011 by the Research Society on Alcoholism.

PMID:
21223304
[PubMed - indexed for MEDLINE]
PMCID:
PMC3544413
Free PMC Article

Publication Types, MeSH Terms, Substances, Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing Icon for PubMed Central
    Loading ...
    Write to the Help Desk