Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2011 Mar 11;286(10):8577-84. doi: 10.1074/jbc.M110.187179. Epub 2011 Jan 10.

Cooperativeness of Orai cytosolic domains tunes subtype-specific gating.

Author information

  • 1Institute of Biophysics, University of Linz, Altenbergerstrasse 69, 4040 Linz, Austria.


Activation of immune cells is triggered by the Ca(2+) release-activated Ca(2+) current, which is mediated via channels of the Orai protein family. A key gating process of the three Orai channel isoforms to prevent Ca(2+) overload is fast inactivation, most pronounced in Orai3. A subsequent reactivation is a unique gating characteristic of Orai1 channels, whereas Orai2 and Orai3 currents display a second, slow inactivation phase. Employing a chimeric approach by sequential swapping of respective intra- and extracellular regions between Orai1 and Orai3, we show here that Orai1 specific proline/arginine-rich domains in the N terminus mediate reactivation, whereas the second, intracellular loop modulates fast and slow gating processes. Swapping C-terminal strands lacks a significant impact. However, simultaneous transfer of Orai3 N terminus and its second loop or C terminus in an Orai1 chimera substantially increases fast inactivation centered between wild-type channels. Concomitant swap of all three cytosolic strands from Orai3 onto Orai1 fully conveys Orai3-like gating characteristics, in a strongly cooperative manner. In conclusion, Orai subtype-specific gating requires a cooperative interplay of all three cytosolic domains.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk