Display Settings:

Format

Send to:

Choose Destination
Neuroimage. 2011 Apr 1;55(3):1091-108. doi: 10.1016/j.neuroimage.2010.12.067. Epub 2010 Dec 31.

Brain MAPS: an automated, accurate and robust brain extraction technique using a template library.

Author information

  • 1Dementia Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK. kk.leung@ucl.ac.uk

Abstract

Whole brain extraction is an important pre-processing step in neuroimage analysis. Manual or semi-automated brain delineations are labour-intensive and thus not desirable in large studies, meaning that automated techniques are preferable. The accuracy and robustness of automated methods are crucial because human expertise may be required to correct any suboptimal results, which can be very time consuming. We compared the accuracy of four automated brain extraction methods: Brain Extraction Tool (BET), Brain Surface Extractor (BSE), Hybrid Watershed Algorithm (HWA) and a Multi-Atlas Propagation and Segmentation (MAPS) technique we have previously developed for hippocampal segmentation. The four methods were applied to extract whole brains from 682 1.5T and 157 3T T(1)-weighted MR baseline images from the Alzheimer's Disease Neuroimaging Initiative database. Semi-automated brain segmentations with manual editing and checking were used as the gold-standard to compare with the results. The median Jaccard index of MAPS was higher than HWA, BET and BSE in 1.5T and 3T scans (p<0.05, all tests), and the 1st to 99th centile range of the Jaccard index of MAPS was smaller than HWA, BET and BSE in 1.5T and 3T scans ( p<0.05, all tests). HWA and MAPS were found to be best at including all brain tissues (median false negative rate ≤0.010% for 1.5T scans and ≤0.019% for 3T scans, both methods). The median Jaccard index of MAPS were similar in both 1.5T and 3T scans, whereas those of BET, BSE and HWA were higher in 1.5T scans than 3T scans (p<0.05, all tests). We found that the diagnostic group had a small effect on the median Jaccard index of all four methods. In conclusion, MAPS had relatively high accuracy and low variability compared to HWA, BET and BSE in MR scans with and without atrophy.

Copyright © 2010 Elsevier Inc. All rights reserved.

PMID:
21195780
[PubMed - indexed for MEDLINE]
PMCID:
PMC3554789
Free PMC Article

Images from this publication.See all images (11)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk