Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Microbiol. 2010 Dec 29;10:327. doi: 10.1186/1471-2180-10-327.

Regulation of polar peptidoglycan biosynthesis by Wag31 phosphorylation in mycobacteria.

Author information

  • 1Department of Biological Science, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA.

Abstract

BACKGROUND:

Sensing and responding to environmental changes is a central aspect of cell division regulation. Mycobacterium tuberculosis contains eleven Ser/Thr kinases, two of which, PknA and PknB, are key signaling molecules that regulate cell division/morphology. One substrate of these kinases is Wag31, and we previously showed that partial depletion of Wag31 caused morphological changes indicative of cell wall defects, and that the phosphorylation state of Wag31 affected cell growth in mycobacteria. In the present study, we further characterized the role of the Wag31 phosphorylation in polar peptidoglycan biosynthesis.

RESULTS:

We demonstrate that the differential growth among cells expressing different wag31 alleles (wild-type, phosphoablative, or phosphomimetic) is caused by, at least in part, dissimilar nascent peptidoglycan biosynthesis. The phosphorylation state of Wag31 is found to be important for protein-protein interactions between the Wag31 molecules, and thus, for its polar localization. Consistent with these results, cells expressing a phosphomimetic wag31 allele have a higher enzymatic activity in the peptidoglycan biosynthetic pathway.

CONCLUSIONS:

The Wag31Mtb phosphorylation is a novel molecular mechanism by which Wag31Mtb regulates peptidoglycan synthesis and thus, optimal growth in mycobacteria.

PMID:
21190553
[PubMed - indexed for MEDLINE]
PMCID:
PMC3019181
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk