Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Phys Chem B. 2011 Feb 10;115(5):1243-53. doi: 10.1021/jp108586b. Epub 2010 Dec 27.

Preferential interaction coefficients of proteins in aqueous arginine solutions and their molecular origins.

Author information

  • 1Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

Abstract

Preferential interaction coefficients provide a thermodynamic measure to quantify the interactions between cosolutes and a protein. Preferential interactions of cosolutes can be measured experimentally using dialysis/densimetry and vapor pressure osmometry (VPO) techniques. The cosolute arginine is a widely used aggregation suppressor with a seemingly unique behavior. Its role in protein aggregation has been studied extensively, although a complete mechanistic understanding of its behavior is lacking. Moreover, due to experimental limitations, experimental preferential interaction data for arginine has only been reported at low concentrations. Schneider and Trout ( J. Phys. Chem. B 2009 , 113 , 7 ) have reported experimental preferential interaction data for argHCl (up to 0.7 m), and their study raised several interesting questions about the preferential interaction of arginine with proteins. Arginine is attracted to proteins at low concentrations but it was highly excluded at high concentrations. Furthermore, the preferential interaction coefficient values were found to vary as a square of the concentration, which is different from commonly observed linear relationship for other cosolutes like urea, glycerol, guanidinium hydrochloride, etc. In this study, preferential interaction coefficients of argHCl have been estimated computationally for two proteins (lysozyme and α-chymotripsinogen A) for a large concentration range (up to 2.8 m). On the basis of these results, the molecular level interactions responsible for the nonlinear exclusion of arginine from the protein surface are identified.

PMID:
21186800
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk