Reactions of HCl and D2O with molten alkali carbonates

J Phys Chem A. 2011 Feb 3;115(4):482-9. doi: 10.1021/jp107182d. Epub 2010 Dec 23.

Abstract

The acidic oxide SO₂ and protic acid HCl are among the gases released in the combustion of coal and the incineration of municipal waste. They are typically removed by wet or dry scrubbing involving calcium carbonate or calcium hydroxide. The molten alkali carbonate eutectic provides a liquid-state alternative that readily absorbs SO₂ and HCl and does not become covered with a passivating layer. Gas-liquid scattering experiments utilizing the eutectic mixture (44 mol % Li₂CO₃, 31 mol % Na₂CO₃, 25 mol % K₂CO₃) reveal that the reaction probability for HCl(g) + CO₃²⁻ → CO₂(g) + OH⁻ + Cl⁻ is 0.31 ± 0.02 at 683 K and rises to 0.39 at 783 K. Gaseous CO₂ is formed within 10⁻⁴ s or less, implying that the reaction takes place in a liquid depth of less than 1000 Å. When the melt is exposed to D₂O, the analogous reaction D₂O(g) + CO₃²⁻ → CO₂(g) + 2OD⁻ occurs too slowly to measure and no water uptake is observed. Together with previous studies of SO₂(g) + CO₃²⁻ → CO₂(g) + SO₃²⁻, these results demonstrate that molten carbonates efficiently remove both gaseous HCl and SO₂ while reacting at most weakly with water vapor. The experiments further highlight the remarkable ability of hot CO₃²⁻ ions to behave as a base in reactions with protic and Lewis acids.