Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Exp Hematol. 2011 Mar;39(3):272-81. doi: 10.1016/j.exphem.2010.12.004. Epub 2010 Dec 17.

TET genes: new players in DNA demethylation and important determinants for stemness.

Author information

  • 1Institute of Experimental Cancer Research, Comprehensive Cancer Center and University Hospital Ulm, Albert-Einstein-Allee 11, Ulm, Germany.

Abstract

Stem cells are defined as cells that have the ability to perpetuate themselves through self-renewal and to generate functional mature cells by differentiation. During each stage, coordinated gene expression is crucial to maintain the balance between self-renewal and differentiation. Disturbance of this accurately balanced system can lead to a variety of malignant disorders. In mammals, DNA cytosine-5 methylation is a well-studied epigenetic pathway that is catalyzed by DNA methyltransferases and is implicated in the control of balanced gene expression, but also in hematological malignancies. In this review, we focus on the TET (ten-eleven-translocation) genes, which recently were identified to catalyze the conversion of cytosine-5 methylation to 5-hydroxymethyl-cytosine, an intermediate form potentially involved in demethylation. In addition, members of the TET family are playing a role in ES cell maintenance and inner cell mass cell specification and were demonstrated to be involved in hematological malignancies. Recently, a correlation between low genomic 5-hydroxymethyl-cytosine and TET2 mutation status was shown in patients with myeloid malignancies.

Copyright © 2011 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

PMID:
21168469
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk