Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Am Stat Assoc. 2010 Sep 1;105(491):956-967.

Bayesian Modeling of MPSS Data: Gene Expression Analysis of Bovine Salmonella Infection.

Author information

  • 1Department of Statistics, 3143 TAMU, Texas A & M University, College Station, TX, 77843.

Abstract

Massively Parallel Signature Sequencing (MPSS) is a high-throughput counting-based technology available for gene expression profiling. It produces output that is similar to Serial Analysis of Gene Expression (SAGE) and is ideal for building complex relational databases for gene expression. Our goal is to compare the in vivo global gene expression profiles of tissues infected with different strains of Salmonella obtained using the MPSS technology. In this article, we develop an exact ANOVA type model for this count data using a zero-inflated Poisson (ZIP) distribution, different from existing methods that assume continuous densities. We adopt two Bayesian hierarchical models-one parametric and the other semiparametric with a Dirichlet process prior that has the ability to "borrow strength" across related signatures, where a signature is a specific arrangement of the nucleotides, usually 16-21 base-pairs long. We utilize the discreteness of Dirichlet process prior to cluster signatures that exhibit similar differential expression profiles. Tests for differential expression are carried out using non-parametric approaches, while controlling the false discovery rate. We identify several differentially expressed genes that have important biological significance and conclude with a summary of the biological discoveries.

PMID:
21165171
[PubMed]
PMCID:
PMC3002112
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk