Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
PLoS Negl Trop Dis. 2010 Dec 7;4(12):e908. doi: 10.1371/journal.pntd.0000908.

Analysis of Salmonella enterica serotype paratyphi A gene expression in the blood of bacteremic patients in Bangladesh.

Author information

  • 1International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh. alaullah@icddrb.org

Abstract

BACKGROUND:

Salmonella enterica serotype Paratyphi A is a human-restricted cause of paratyphoid fever, accounting for up to a fifth of all cases of enteric fever in Asia.

METHODOLOGY/PRINCIPAL FINDINGS:

In this work, we applied an RNA analysis method, Selective Capture of Transcribed Sequences (SCOTS), and cDNA hybridization-microarray technology to identify S. Paratyphi A transcripts expressed by bacteria in the blood of three patients in Bangladesh. In total, we detected 1,798 S. Paratyphi A mRNAs expressed in the blood of infected humans (43.9% of the ORFeome). Of these, we identified 868 in at least two patients, and 315 in all three patients. S. Paratyphi A transcripts identified in at least two patients encode proteins involved in energy metabolism, nutrient and iron acquisition, vitamin biosynthesis, stress responses, oxidative stress resistance, and pathogenesis. A number of detected transcripts are expressed from PhoP and SlyA-regulated genes associated with intra-macrophage survival, genes contained within Salmonella Pathogenicity Islands (SPIs) 1-4, 6, 10, 13, and 16, as well as RpoS-regulated genes. The largest category of identified transcripts is that of encoding proteins with unknown function. When comparing levels of bacterial mRNA using in vivo samples collected from infected patients to samples from in vitro grown organisms, we found significant differences for 347, 391, and 456 S. Paratyphi A transcripts in each of three individual patients (approximately 9.7% of the ORFeome). Of these, expression of 194 transcripts (4.7% of ORFs) was concordant in two or more patients, and 41 in all patients. Genes encoding these transcripts are contained within SPI-1, 3, 6 and 10, PhoP-regulated genes, involved in energy metabolism, nutrient acquisition, drug resistance, or uncharacterized genes. Using quantitative RT-PCR, we confirmed increased gene expression in vivo for a subset of these genes.

CONCLUSION/SIGNIFICANCE:

To our knowledge, we describe the first microarray-based transcriptional analysis of a pathogen in the blood of naturally infected humans.

PMID:
21151879
[PubMed - indexed for MEDLINE]
PMCID:
PMC2998432
Free PMC Article

Images from this publication.See all images (3)Free text

Figure 1
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk