The evolutionary aspects of aquaporin family

Am J Physiol Regul Integr Comp Physiol. 2011 Mar;300(3):R566-76. doi: 10.1152/ajpregu.90464.2008. Epub 2010 Dec 9.

Abstract

Aquaporins (AQPs) were originally identified as channels facilitating water transport across the plasma membrane. They have a pair of highly conserved signature sequences, asparagine-proline-alanine (NPA) boxes, to form a pore. However, some have little conserved amino acid sequences around the NPA boxes unclassifiable to two previous AQP subfamilies, classical AQPs and aquaglyceroporins. These will be called unorthodox AQPs in this review. Interestingly, these unorthodox AQPs have a highly conserved cysteine residue downstream of the second NPA box. AQPs also have a diversity of functions: some related to water transport such as fluid secretion, fluid absorption, and cell volume regulation, and the others not directly related to water transport such as cell adhesion, cell migration, cell proliferation, and cell differentiation. Some AQPs even permeate nonionic small molecules, ions, metals, and possibly gasses. AQP gene disruption studies have revealed their physiological roles: water transport in the kidney and exocrine glands, glycerol transport in fat metabolism and in skin moisture, and nutrient uptakes in plants. Furthermore, AQPs are also present at intracellular organelles, including tonoplasts, mitochondria, and the endoplasmic reticulum. This review focuses on the evolutionary aspects of AQPs from bacteria to humans in view of the structural and functional diversities of AQPs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Aquaporins / chemistry
  • Aquaporins / classification
  • Aquaporins / metabolism*
  • Conserved Sequence
  • Evolution, Molecular*
  • Humans
  • Molecular Sequence Data
  • Protein Conformation
  • Structure-Activity Relationship
  • Water / metabolism*
  • Water-Electrolyte Balance*

Substances

  • Aquaporins
  • Water