Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Vis. 2010 Oct 26;16:2137-45.

Opacification of lenses cultured in the presence of Pb.

Author information

  • 1Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40292, USA. rachel.neal@louisville.edu

Abstract

PURPOSE:

Occupational and environmental Pb-exposure is associated with protein aggregation diseases which typically present in elderly populations (Parkinsons and cataract). Post-translational processing of crystallins, the major structural proteins of the lens, is altered with short-term Pb-exposure in Fisher 344 rats. In addition, lenses from aged rats become opaque upon long-term exposure to Pb in organ culture. To explore the route to lens opacification in the presence of Pb, cultured lenses from young rats which exhibit higher metabolic activity in lens culture and are more susceptible to experimental cataract in vivo and in vitro were exposed to Pb and evaluated for morphological and biochemical alterations.

METHODS:

Following culture in Pb (as lead nitrate) for four days (in the presence/absence of oxidative challenge), lenses were examined for clarity, integrity of epithelial layer, and molecular stability including crystallin post-translational modification and choline transport. Clarity of lenses cultured with/without Pb for up to 8 days was assessed to determine if Pb exposure would accelerate opacification.

RESULTS:

Lenses cultured in Pb for four days exhibited epithelial abnormalities including epithelial cell multilayering and nuclei abnormalities with extension of the nucleated epithelial cells past the bow region. Alterations in crystallin post-translational modifications and decreased membrane transport of choline were noted without corresponding lens opacification or altered α-crystallin chaperone activity. Lenses treated with Pb according to the same exposure protocol with subsequent challenge by hydrogen peroxide became opaque while the contralateral control lenses did not. Lenses which were cultured in the presence of Pb for longer periods with no subsequent oxidative insult exhibited lens failure at earlier time points than did the controls.

CONCLUSIONS:

These data indicate that Pb-exposure can accelerate the degradation of the cultured lens through induction of epithelial cell abnormalities, induce structural protein modifications before opacity, and predispose the lens to opacification with subsequent oxidant challenge.

PMID:
21139692
[PubMed - indexed for MEDLINE]
PMCID:
PMC2994421
Free PMC Article

Images from this publication.See all images (3)Free text

Figure 1
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Molecular Vision Icon for PubMed Central
    Loading ...
    Write to the Help Desk