Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Bioinformatics. 2011 Jan 15;27(2):220-4. doi: 10.1093/bioinformatics/btq628. Epub 2010 Dec 5.

Predicting in vitro drug sensitivity using Random Forests.

Author information

  • 1Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. riddickgp@mail.nih.gov

Abstract

MOTIVATION:

Panels of cell lines such as the NCI-60 have long been used to test drug candidates for their ability to inhibit proliferation. Predictive models of in vitro drug sensitivity have previously been constructed using gene expression signatures generated from gene expression microarrays. These statistical models allow the prediction of drug response for cell lines not in the original NCI-60. We improve on existing techniques by developing a novel multistep algorithm that builds regression models of drug response using Random Forest, an ensemble approach based on classification and regression trees (CART).

RESULTS:

This method proved successful in predicting drug response for both a panel of 19 Breast Cancer and 7 Glioma cell lines, outperformed other methods based on differential gene expression, and has general utility for any application that seeks to relate gene expression data to a continuous output variable.

IMPLEMENTATION:

Software was written in the R language and will be available together with associated gene expression and drug response data as the package ivDrug at http://r-forge.r-project.org.

PMID:
21134890
[PubMed - indexed for MEDLINE]
PMCID:
PMC3018816
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk