Display Settings:


Send to:

Choose Destination
Brain Res. 1990 May 7;515(1-2):261-8.

Ca2(+)-dependent adaptive properties in the solitary olfactory receptor cell of the newt.

Author information

  • 1Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan.


The time-dependent decay of the olfactory receptor potential was analyzed with a solitary cell preparation by using the whole-cell patch clamp technique. During prolonged stimulation by 10 mM N-amylacetate under standard conditions, 17 out of 63 isolated olfactory cells responded with slow depolarization. Of these 17 cells, response amplitudes in 14 cells ('phasic/tonic' response) gradually decayed within 9 s, with a half-decay time of 1.71 +/- 1.10 s (mean +/- S.D.). The relative amplitude (ratio of tonic component to peak amplitude, Vtonic/Vmax) was 0.29 +/- 0.10. The response decay was attributed to the inactivation of the odorant-activated conductance. The recovery after inactivation, which was determined with double pulse experiments, was dependent on the resting interval. The inactivation of the odorant-activated conductance was found to be observed only when the external medium contained Ca2+. In addition, it was found that the odorant-activated conductance was capable of permeating Ca2+ (PCa/PNa = 6.5), and a rise in the internal EGTA concentration (to 50 mM) inhibited the inactivation. These observations suggest that the decay of the olfactory response to prolonged stimulation is mediated by Ca2+ influx.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk