Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Appl Environ Microbiol. 2011 Feb;77(3):732-8. doi: 10.1128/AEM.02132-10. Epub 2010 Dec 3.

Anaplerotic role for cytosolic malic enzyme in engineered Saccharomyces cerevisiae strains.

Author information

  • 1Department of Biotechnology, Delft University of Technology and Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands.

Abstract

Malic enzyme catalyzes the reversible oxidative decarboxylation of malate to pyruvate and CO(2). The Saccharomyces cerevisiae MAE1 gene encodes a mitochondrial malic enzyme whose proposed physiological roles are related to the oxidative, malate-decarboxylating reaction. Hitherto, the inability of pyruvate carboxylase-negative (Pyc(-)) S. cerevisiae strains to grow on glucose suggested that Mae1p cannot act as a pyruvate-carboxylating, anaplerotic enzyme. In this study, relocation of malic enzyme to the cytosol and creation of thermodynamically favorable conditions for pyruvate carboxylation by metabolic engineering, process design, and adaptive evolution, enabled malic enzyme to act as the sole anaplerotic enzyme in S. cerevisiae. The Escherichia coli NADH-dependent sfcA malic enzyme was expressed in a Pyc(-) S. cerevisiae background. When PDC2, a transcriptional regulator of pyruvate decarboxylase genes, was deleted to increase intracellular pyruvate levels and cells were grown under a CO(2) atmosphere to favor carboxylation, adaptive evolution yielded a strain that grew on glucose (specific growth rate, 0.06 ± 0.01 h(-1)). Growth of the evolved strain was enabled by a single point mutation (Asp336Gly) that switched the cofactor preference of E. coli malic enzyme from NADH to NADPH. Consistently, cytosolic relocalization of the native Mae1p, which can use both NADH and NADPH, in a pyc1,2Δ pdc2Δ strain grown under a CO(2) atmosphere, also enabled slow-growth on glucose. Although growth rates of these strains are still low, the higher ATP efficiency of carboxylation via malic enzyme, compared to the pyruvate carboxylase pathway, may contribute to metabolic engineering of S. cerevisiae for anaerobic, high-yield C(4)-dicarboxylic acid production.

PMID:
21131518
[PubMed - indexed for MEDLINE]
PMCID:
PMC3028732
Free PMC Article

Images from this publication.See all images (1)Free text

FIG. 1.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk