Send to:

Choose Destination
See comment in PubMed Commons below
Plant Physiol Biochem. 2011 Feb;49(2):146-50. doi: 10.1016/j.plaphy.2010.11.004. Epub 2010 Nov 12.

Characterization of phytase from three ferns with differing arsenic tolerance.

Author information

  • 1Environmental Science and Engineering Department, Huazhong Agricultural University, Wuhan 430070, China.


Phytase is involved in many physiological activities in plants including phosphorus metabolism and stress response. The effects of arsenic on phytase activities in arsenic-hyperaccumulator Pteris vittata were determined. Two arsenic-sensitive ferns (Pteris ensiformis and Nephrolepis exaltata) were included for comparison purpose. Fern phytase was extracted with Tris-HCl buffer (pH 7.6) followed by ammonium sulfate partial purification to characterize its properties and arsenic stress responses. The phytase showed an optimum pH of 5.0 and temperature of 40 °C except for P. vittata with 40-70 °C. Phytase from P. vittata was the first plant-phytase showing high heat resistance with no loss of activity by heating it at 70 °C, which may have application in feed industry. Phytase activity was inhibited by arsenate but not by arsenite. The fact that P. vittata phytase was the most heat-tolerant (40-70 °C) and had the highest resistance to arsenate among the three ferns suggest that phytase may play a role in arsenic detoxification and arsenic hyperaccumulation in P. vittata.

Copyright © 2010 Elsevier Masson SAS. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk