Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2010 Dec 1;30(48):16188-96. doi: 10.1523/JNEUROSCI.2265-10.2010.

The prefrontal cortex communicates with the amygdala to impair learning after acute stress in females but not in males.

Author information

  • 1Department of Psychology and Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA.

Abstract

Acute stress exposure enhances classical eyeblink conditioning in male rats, whereas exposure to the same event dramatically impairs performance in females (Wood and Shors, 1998; Wood et al., 2001). We hypothesized that stress affects learning differently in males and females because different brain regions and circuits are being activated. In the first experiment, we determined that neuronal activity within the medial prefrontal cortex (mPFC) during the stressful event is necessary to disrupt learning in females. In both males and females, the mPFC was bilaterally inactivated with GABA agonist muscimol before the stressor. Inactivation prevented only the impaired performance in females; it had no consequence for performance in males. However, in the second experiment, excitation of the mPFC alone with GABA antagonist picrotoxin was insufficient to elicit the stress effect that was prevented through the inactivation of this region in females. Therefore, we hypothesized that the mPFC communicates with the basolateral amygdala to disrupt learning in females after the stressor. To test this hypothesis, these structures were disconnected from each other with unilateral excitotoxic (NMDA) lesions on either the same or opposite sides of the brain. Females with contralateral lesions, which disrupt the connections on both sides of the brain, were able to learn after the stressful event, whereas those with ipsilateral lesions, which disrupt only one connection, did not learn after the stressor. Together, these data indicate that the mPFC is critically involved in females during stress to impair subsequent learning and does so via communication with the amygdala.

PMID:
21123565
[PubMed - indexed for MEDLINE]
PMCID:
PMC3073607
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk