Format

Send to:

Choose Destination
See comment in PubMed Commons below
ACS Appl Mater Interfaces. 2010 Dec;2(12):3493-505. doi: 10.1021/am100669k. Epub 2010 Nov 29.

Structural in situ study of the thermal behavior of manganese dioxide materials: toward selected electrode materials for supercapacitors.

Author information

  • 1Institut National de Recherche et d'Analyse Physico-Chimique, Laboratoire des Matériaux Utiles, Pôle Technologique de Sidi Thabet, 2020 Sidi Thabet, Tunisia. ouassim.ghodbane@inrap.rnrt.tn

Abstract

The thermal behavior of a series of MnO2 materials was investigated toward MnO2 microstructures under inert atmospheres. The byproduct formed during MnO2 heat treatments from the room temperature to 800 °C were characterized by in situ X-ray diffraction analyses. It was found that annealing spinel and ramsdellite phases caused the formation of MnO2 pyrolusite at 200 °C, Mn2O3, at 400 °C, and then Mn3O4 at higher temperatures. In the case of cryptomelane and birnessite phases, the heating process resulted in the formation of K0.51Mn0.93O2 at 600 °C, while Mn3O4 was also formed and still present up to 800 °C. Heat-treating Ni-todorokite and OMS-5 up to about 450 °C led to the formation of NiMn2O4 and NaxMnO2, respectively, and again Mn3O4 at higher temperatures. All of these structural transformations were correlated to resulting weight losses of MnO2 powders, measured by thermogravimetric analyses, during the heating process. Cyclic voltammetry measurements were performed in the presence of 0.5 M K2SO4 aqueous solution for annealed cryptomelane, K0.51Mn0.93O2, and Mn3O4-based electrodes. It was found that MnO2 cryptomelane is electrochemically stable upon heating. The long-term charge/discharge voltammetric cycling revealed that the specific capacitance of Mn3O4-based electrode is significantly improved from 14 F·g(-1) (after 20 cycles) to 123 F·g(-1) (after 500 cycles).

PMID:
21114252
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk