Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Nat Struct Mol Biol. 2010 Dec;17(12):1422-30. doi: 10.1038/nsmb.1954. Epub 2010 Nov 28.

Optical trapping with high forces reveals unexpected behaviors of prion fibrils.

Author information

  • 1Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.

Abstract

Amyloid fibrils are important in diverse cellular functions, feature in many human diseases and have potential applications in nanotechnology. Here we describe methods that combine optical trapping and fluorescent imaging to characterize the forces that govern the integrity of amyloid fibrils formed by a yeast prion protein. A crucial advance was to use the self-templating properties of amyloidogenic proteins to tether prion fibrils, enabling their manipulation in the optical trap. At normal pulling forces the fibrils were impervious to disruption. At much higher forces (up to 250 pN), discontinuities occurred in force-extension traces before fibril rupture. Experiments with selective amyloid-disrupting agents and mutations demonstrated that such discontinuities were caused by the unfolding of individual subdomains. Thus, our results reveal unusually strong noncovalent intermolecular contacts that maintain fibril integrity even when individual monomers partially unfold and extend fibril length.

PMID:
21113168
[PubMed - indexed for MEDLINE]
PMCID:
PMC3274366
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk