Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Cell Signal. 2011 Mar;23(3):586-93. doi: 10.1016/j.cellsig.2010.11.011. Epub 2010 Nov 25.

The channel-kinase TRPM7 regulates phosphorylation of the translational factor eEF2 via eEF2-k.

Author information

  • 1Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, CO 80206, USA. perrauda@njhealth.org


Protein translation is an essential but energetically expensive process, which is carefully regulated in accordance to the cellular nutritional and energy status. Eukaryotic elongation factor 2 (eEF2) is a central regulation point since it mediates ribosomal translocation and can be inhibited by phosphorylation at Thr56. TRPM7 is the unique fusion of an ion channel with a functional Ser/Thr-kinase. While TRPM7's channel function has been implicated in regulating vertebrate Mg(2+) uptake required for cell growth, the function of its kinase domain remains unclear. Here, we show that under conditions where cell growth is limited by Mg(2+) availability, TRPM7 via its kinase mediates enhanced Thr56 phosphorylation of eEF2. TRPM7-kinase does not appear to directly phosphorylate eEF2, but rather to influence the amount of eEF2's cognate kinase eEF2-k, involving its phosphorylation at Ser77. These findings suggest that TRPM7's structural duality ensures ideal positioning of its kinase in close proximity to channel-mediated Mg(2+) uptake, allowing for the adjustment of protein translational rates to the availability of Mg(2+).

Copyright © 2010 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk