Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2011 Jan 28;405(4):1040-55. doi: 10.1016/j.jmb.2010.11.040. Epub 2010 Nov 26.

Solution structure and activation mechanism of ubiquitin-like small archaeal modifier proteins.

Author information

  • 1Institute of Molecular Biology and Biophysics, Schafmattstr. 20, ETH Zürich, CH-8093 Zürich, Switzerland.

Abstract

In archaea, two ubiquitin-like small archaeal modifier protein (SAMPs) were recently shown to be conjugated to proteins in vivo. SAMPs display homology to bacterial MoaD sulfur transfer proteins and eukaryotic ubiquitin-like proteins, and they share with them the conserved C-terminal glycine-glycine motif. Here, we report the solution structure of SAMP1 from Methanosarcina acetivorans and the activation of SAMPs by an archaeal protein with homology to eukaryotic E1 enzymes. Our results show that SAMP1 possesses a β-grasp fold and that its hydrophobic and electrostatic surface features are similar to those of MoaD. M. acetivorans SAMP1 exhibits an extensive flexible surface loop between helix-2 and the third strand of the β-sheet, which contributes to an elongated surface groove that is not observed in bacterial ubiquitin homologues and many other SAMPs. We provide in vitro biochemical evidence that SAMPs are activated in an ATP-dependent manner by an E1-like enzyme that we have termed E1-like SAMP activator (ELSA). We show that activation occurs by formation of a mixed anhydride (adenylate) at the SAMP C-terminus and is detectable by SDS-PAGE and electrospray ionization mass spectrometry.

Copyright © 2010 Elsevier Ltd. All rights reserved.

PMID:
21112336
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk