Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Brain Res. 2011 Jan 25;1370:64-79. doi: 10.1016/j.brainres.2010.11.013. Epub 2010 Nov 23.

Hyperglycemia magnifies Schwann cell dysfunction and cell death triggered by PA-induced lipotoxicity.

Author information

  • 1Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.

Abstract

Lipid overload resulting in lipotoxicity is prominent in a number of chronic diseases and has been associated with cellular dysfunction and cell death. This study characterizes palmitic acid-induced lipotoxicity (PA-LTx) in Schwann cell cultures grown in normal and high glucose concentrations. The study shows for the first time that Schwann cell (SC) cultures exposed to elevated levels of PA exhibit a dose- and time-dependent loss in cell viability. Hoescht and Annexin V/7AAD staining confirmed cell death through apoptosis and the lipotoxic effect was more dramatic in SC cultures grown under high glucose conditions. The first indication of cellular dysfunction in treated SC cultures was a decrease in Ca(++) levels in the endoplasmic reticulum (ER, [Ca(++)](ER)) observed five minutes following the initial challenge with PA. This decrease in [Ca(++) ](ER) was followed by a significant increase in the expression of ER stress signature genes CHOP, Xbp1 and GRP78. The early ER stress response induced by PA-LTx was followed by a strong mitochondrial membrane depolarization. Flow cytometry using 2', 7'-dichlorodihydrofluorescein diacetate (H(2)DCFDA) showed an increase in oxidative stress within three to six hours after PA treatment. Treatment of cultures undergoing PA-LTx with the calcium chelator BAPTA-AM and the anti-oxidant MCI-186 significantly reversed the lipotoxic effect by decreasing the generation of ROS and significantly increasing cell viability. We conclude that lipotoxicity in Schwann cells results in cellular dysfunction and cell death that involves a robust ER stress response, mitochondrial dysfunction and an augmented state of cellular oxidative stress (ASCOS).

Copyright © 2010 Elsevier B.V. All rights reserved.

PMID:
21108938
[PubMed - indexed for MEDLINE]
PMCID:
PMC3018544
Free PMC Article

Images from this publication.See all images (9)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk