Format

Send to:

Choose Destination
See comment in PubMed Commons below
Curr Opin Cell Biol. 2011 Apr;23(2):135-42. doi: 10.1016/j.ceb.2010.10.008. Epub 2010 Nov 17.

Endoplasmic reticulum stress-sensing mechanisms in yeast and mammalian cells.

Author information

  • 1Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.

Abstract

Upon endoplasmic reticulum (ER) stress, ER-located transmembrane stress sensors evoke diverse protective responses. Although ER stress-dependent activation of the sensor proteins is partly explained through their negative regulation by the ER-located chaperone BiP under non-stress conditions, each of the sensors is also regulated by distinct mechanism(s). For instance, yeast Ire1 is fully activated via its direct interaction with unfolded proteins accumulated in the ER. This insight is consistent with a classical notion that unfolded proteins per se trigger ER-stress responses, while various stress stimuli also seem to activate individual sensors independently of unfolded proteins and in a stimuli-specific manner. These properties may account for the different responses observed under different conditions in mammalian cells, which carry multiple ER-stress sensors.

Copyright © 2010 Elsevier Ltd. All rights reserved.

PMID:
21093243
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk