Format

Send to:

Choose Destination
See comment in PubMed Commons below
Med Sci Sports Exerc. 2011 Jun;43(6):1017-24. doi: 10.1249/MSS.0b013e318203afa3.

Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis.

Author information

  • 1School of Human Movement Studies, The University of Queensland, St Lucia, Queensland, Australia. glenn.wadley@deakin.edu.au

Abstract

PURPOSE:

Exercise increases the production of reactive oxygen species (ROS) in skeletal muscle, and athletes often consume antioxidant supplements in the belief they will attenuate ROS-related muscle damage and fatigue during exercise. However, exercise-induced ROS may regulate beneficial skeletal muscle adaptations, such as increased mitochondrial biogenesis. We therefore investigated the effects of long-term antioxidant supplementation with vitamin E and α-lipoic acid on changes in markers of mitochondrial biogenesis in the skeletal muscle of exercise-trained and sedentary rats.

METHODS:

Male Wistar rats were divided into four groups: 1) sedentary control diet, 2) sedentary antioxidant diet, 3) exercise control diet, and 4) exercise antioxidant diet. Animals ran on a treadmill 4 d · wk at ∼ 70%VO2max for up to 90 min · d for 14 wk.

RESULTS:

Consistent with the augmentation of skeletal muscle mitochondrial biogenesis and antioxidant defenses, after training there were significant increases in peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) messenger RNA (mRNA) and protein, cytochrome C oxidase subunit IV (COX IV) and cytochrome C protein abundance, citrate synthase activity, Nfe2l2, and SOD2 protein (P < 0.05). Antioxidant supplementation reduced PGC-1α mRNA, PGC-1α and COX IV protein, and citrate synthase enzyme activity (P < 0.05) in both sedentary and exercise-trained rats.

CONCLUSIONS:

Vitamin E and α-lipoic acid supplementation suppresses skeletal muscle mitochondrial biogenesis, regardless of training status.

PMID:
21085043
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk