Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Genomics. 2010 Nov 8;11:621. doi: 10.1186/1471-2164-11-621.

Genomic tools development for Aquilegia: construction of a BAC-based physical map.

Author information

  • 1Department of Genetics and Biochemistry, Clemson University, SC 29634, USA.

Abstract

BACKGROUND:

The genus Aquilegia, consisting of approximately 70 taxa, is a member of the basal eudicot lineage, Ranuculales, which is evolutionarily intermediate between monocots and core eudicots, and represents a relatively unstudied clade in the angiosperm phylogenetic tree that bridges the gap between these two major plant groups. Aquilegia species are closely related and their distribution covers highly diverse habitats. These provide rich resources to better understand the genetic basis of adaptation to different pollinators and habitats that in turn leads to rapid speciation. To gain insights into the genome structure and facilitate gene identification, comparative genomics and whole-genome shotgun sequencing assembly, BAC-based genomics resources are of crucial importance.

RESULTS:

BAC-based genomic resources, including two BAC libraries, a physical map with anchored markers and BAC end sequences, were established from A. formosa. The physical map was composed of a total of 50,155 BAC clones in 832 contigs and 3939 singletons, covering 21X genome equivalents. These contigs spanned a physical length of 689.8 Mb (~2.3X of the genome) suggesting the complex heterozygosity of the genome. A set of 197 markers was developed from ESTs induced by drought-stress, or involved in anthocyanin biosynthesis or floral development, and was integrated into the physical map. Among these were 87 genetically mapped markers that anchored 54 contigs, spanning 76.4 Mb (25.5%) across the genome. Analysis of a selection of 12,086 BAC end sequences (BESs) from the minimal tiling path (MTP) allowed a preview of the Aquilegia genome organization, including identification of transposable elements, simple sequence repeats and gene content. Common repetitive elements previously reported in both monocots and core eudicots were identified in Aquilegia suggesting the value of this genome in connecting the two major plant clades. Comparison with sequenced plant genomes indicated a higher similarity to grapevine (Vitis vinifera) than to rice and Arabidopsis in the transcriptomes.

CONCLUSIONS:

The A. formosa BAC-based genomic resources provide valuable tools to study Aquilegia genome. Further integration of other existing genomics resources, such as ESTs, into the physical map should enable better understanding of the molecular mechanisms underlying adaptive radiation and elaboration of floral morphology.

PMID:
21059242
[PubMed - indexed for MEDLINE]
PMCID:
PMC3091760
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk