Format

Send to:

Choose Destination
See comment in PubMed Commons below
Struct Equ Modeling. 2010 Apr 1;17(2):193-215.

Multilevel Latent Class Analysis: An Application of Adolescent Smoking Typologies with Individual and Contextual Predictors.

Author information

  • 1Colorado State University.

Abstract

Latent Class Analysis (LCA) is a statistical method used to identify subtypes of related cases using a set of categorical and/or continuous observed variables. Traditional LCA assumes that observations are independent. However, multilevel data structures are common in social and behavioral research and alternative strategies are needed. In this paper, a new methodology, multilevel latent class analysis (MLCA), is described and an applied example is presented. Latent classes of cigarette smoking among 10,772 European American females in 9th grade who live in one of 206 rural communities across the U.S. are considered. A parametric and non-parametric approach for estimating a MLCA are presented and both individual and contextual predictors of the smoking typologies are assessed. Both latent class and indicator-specific random effects models are explored. The best model was comprised of three Level 1 latent smoking classes (heavy smokers, moderate smokers, non-smokers), two random effects to account for variation in the probability of Level 1 latent class membership across communities, and a random factor for the indicator-specific Level 2 variances. Several covariates at the individual and contextual level were useful in predicting latent classes of cigarette smoking as well as the individual indicators of the latent class model. This paper will assist researchers in estimating similar models with their own data.

PMID:
21057651
[PubMed]
PMCID:
PMC2968712
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk