Display Settings:

Format

Send to:

Choose Destination
J Plant Physiol. 2011 Apr 15;168(6):549-57. doi: 10.1016/j.jplph.2010.08.018. Epub 2010 Nov 2.

Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus.

Author information

  • 1Université François Rabelais de Tours, EA 2106 Biomolécules et Biotechnologies Végétales, IFR 135 Imagerie fonctionnelle 37200 Tours, France.

Abstract

Vindoline constitutes the main terpenoid indole alkaloid accumulated in leaves of Catharanthus roseus, and four genes involved in its biosynthesis have been identified. However, the spatial organization of the tabersonine-to-vindoline biosynthetic pathway is still incomplete. To pursue the characterization of this six-step conversion, we illustrated, with in situ hybridization, that the transcripts of the second biosynthetic enzyme, 16-hydroxytabersonine 16-O-methyltransferase (16OMT), are specifically localized to the aerial organ epidermis. At the subcellular level, by combining GFP imaging, bimolecular fluorescence complementation assays and yeast two-hybrid analysis, we established that the first biosynthetic enzyme, tabersonine 16-hydroxylase (T16H), is anchored to the ER as a monomer via a putative N-terminal helix that we cloned using a PCR approach. We also showed that 16OMT homodimerizes in the cytoplasm, allowing its exclusion from the nucleus and thus facilitating the uptake of T16H conversion product, although no T16H/16OMT interactions occur. Moreover, the two last biosynthetic enzymes, desacetoxyvindoline-4-hydroxylase (D4H) and deacetylvindoline-4-O-acetyltransferase (DAT), were shown to operate as monomers that reside in the nucleocytoplasmic compartment following passive diffusion to the nucleus allowed by the protein size. No D4H/DAT interactions were detected, suggesting the absence of metabolic channeling in the vindoline biosynthetic pathway. Finally, these results highlight the importance of the inter- and intracellular translocations of intermediates during the vindoline biosynthesis and their potential regulatory role.

Copyright © 2010 Elsevier GmbH. All rights reserved.

PMID:
21047699
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk